SOME NEW SEPARATION AXIOMS IN TOPOLOGICAL SPACES

¹R.Umamaheswari ²K.Bala Deepa Arasi and ³V.Maheswari

¹ PG Studeent, PG & Reasearch Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, TN, India. uma91310@gmail.com

^{2,3} Assistant Professor of Mathematics , PG & Reasearch Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, TN, India.

baladeepa85@gmail.com,mahiraj2005@gmail.com

Abstract:

A subset A of a space (X,τ) is said to be sbg closed if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is bg-open in X. The complement of sbg closed set is called sbg-open set. A function f: $(X,\tau) \to (Y,\sigma)$ is said to be sbg- continuous if $f^{-1}(v)$ is sbg closed in (X,τ) for every closed set V in (Y,σ) . A function f: $(X,\tau) \to (Y,\sigma)$ is said to be sbg- irresolute if $f^{-1}(V)$ is Sbg closed in (X, τ) . In this paper we introduce three new topological spaces namely sbĝ-T₀ sbĝ-T₁ and sbĝ-T₂ spaces via sbĝ- open sets. Also we characterize their properties.

Keywords:

sbĝ closed set, sbĝ- open set, sbĝ-T₀ spaces, sbĝ-T₁ spaces, sbĝ-T₂ spaces, sbĝkernel.

1.Inroduction:

Caldas and Jafari[7] introduced and studied b-T₀,b-T₁ and b-T₂ via b-open sets. K.Bala Deepa Arasi and S.Navaneeatha Krishnan[2] introduced the concept of sbgclosed set in Topological spaces. And they introduced and studied sbg-continuous sbĝ-continuous functions[3], contra functions [4], sbg-quotientmap[5], sbgconnected spaces sbĝ-compact and spaces[6].

In this paper we introduce three new spaces namely, $sb\hat{g}-T_0$, $sb\hat{g}-T_1$ and $sb\hat{g}-T_2$ spaces via sbĝ-open set .We investigate relation between these spaces with other existing spaces. Also we study some properties of these spaces.

2. Preliminaries:

Throughout this paper $(X, \tau) & (Y, \sigma)$ respectively and on which no separation axioms are assumed unless otherwise explicity stated. Let A be a subset of the space X. The interior and closure of a set A in X are denoted by int(A) and

cl(A). The complement of A is denoted by (X-A) or A^c .

Definition 2.1: A subset A of a topological space (X,τ) is said to be an sbg-closed set if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is bĝopen in X. The family of all sbg-closed sets of X is denoted by $sb\hat{g}$ -C(X). The complement of sbg-closed set is called sbgopen set. The family of all sbg-open sets of X is denoted by $sb\hat{g}$ -O(X).

Definition 2.2:[7] A topological space (X,τ) is said to be

i) b-T₀ if for each pair of distinct points in X, there is a b-open set containing one of the points but not the other.

ii)b-T₁ if for each pair of distinct points x and y of X, there exist b-open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

iii)b-T₂ if for each pair of distinct points x and y of X, there exist disjoint b-open sets U and V containing x and y respectively.

Definition 2.3:[8] A topological space (X,τ) is said to be

i) α -T₀ if for each pair of distinct points in X, there exists an α -open set containing one of the points but not the other.

- ii) α -T₁ if for each pair of distinct points x and y of X, there exist α -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.
- iii) α -T₂ if for each pair of distinct points x and y of X, there exist disjoint α -open sets U and V containing x and y respectively.

Definition 2.4:[9] A topological space (X,τ) is said to be

i)gb- T_0 if for each pair of distinct points in X, there is a gb-open set containing one of the points but not the other.

ii)gb- T_1 if for each pair of distinct points x and y of X, there exist gb-open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

iii)gb-T₂ if for each pair of distinct points x and y of X, there exist disjoint gbopen sets U and V containing x and y respectively.

Definition 2.5: A topological space (X,τ) is said to be

- i) g*b-T₀ if for each pair of distinct points in X, there is a g*b-open set containing one of the points but not the other.
- ii) g^*b - T_1 if for each pair of distinct points x and y of X, there exist g^*b -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$
- iii) g*b-T₂ if for each pair of distinct points x and y of X, there exist disjoint g*b-open sets U and V containing x and y respectively.

Definition 2.6: A topological space (X,τ) is said to be

i)b \hat{g} - T_0 if for each pair of distinct points in X, there is a b \hat{g} -open set containing one of the points but not the other.

ii)b \hat{g} - T_1 if for each pair of distinct points x and y of X, there exist b \hat{g} -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

iii)b \hat{g} - T_2 if for each pair of distinct points x and y of X, there exist disjoint b \hat{g} -open

sets U and V containing x and y respectively.

Proposition 2.7:[2] Every α -closed set is sb \hat{g} -closed set

Proposition 2.8:[2]

- i) Every sbg-closed set is b-closed set.
- ii) Every sbg-closed set is gb-closed set.
- iii)Every sbĝ-closed set is g*b-closed set.
- iv)Every sbĝ-closed set is bĝ-closed set.

Proposition 2.9: Let A and B be subsets of a topological space (X,τ) . Then

- $1.\text{sb}\hat{g}\text{-cl}(\phi) = \phi$ and $\text{sb}\hat{g}\text{-cl}(X) = X$.
- 2.If $A \subseteq B$, then $sb\hat{g}\text{-}cl(A) \subseteq sb\hat{g}\text{-}cl(B)$.
- $3.\operatorname{sb\hat{g}-cl}(A \cap B) \subseteq \operatorname{sb\hat{g}-cl}(A) \cap \operatorname{sb\hat{g}-cl}(B).$
- $4.\text{sb}\hat{g}\text{-cl}(A \cup B) \supset \text{sb}\hat{g}\text{-cl}(A) \cup \text{sb}\hat{g}\text{-cl}(B)$.
- 5.A is an sb \hat{g} -closed set in (X,τ) if and only if $A = \text{sb}\hat{g}$ -cl(A).
- $6.\text{sb}\hat{g}\text{-cl}(\text{sb}\hat{g}\text{-cl}(A)) = \text{sb}\hat{g}\text{-cl}(A).$

Proposition 2.10:

Let (X,τ) be a topological space. Then $x \in \text{sb}\hat{g}\text{-cl}(A)$ if and only if $U \cap A \neq \phi$ for every sb \hat{g} -open set U containing x.

3. $sb\hat{g}$ -T_i SPACES, i = 0, 1, 2.

Definition3.1: A topological space (X,τ) is said to be $sb\hat{g}$ - T_0 if for each pair of distinct point x,y in X, there exists an $sb\hat{g}$ -open set U of X such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

Example 3.2: Let $X=\{a,b,c\}$ with a topology $\tau=\{X,\phi,\{a\}\}$. Here, $sb\hat{g}$ -O(X)= $\{X,\phi,\{a\}\}$, $\{a,b\},\{a,c\}\}$. Clearly, X is an $sb\hat{g}$ - T_0 space.

Definition 3.3: A topological space (X,τ) is said to be sb \hat{g} - T_1 if for each pair of distinct points x,y in X, there exist two sb \hat{g} -open sets U and V such that $x \in U$ but $y \notin U$ and $x \notin V$ but $y \in V$.

Example 3.4: Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. sb $\hat{g}O(X) = \{X,\phi,\{a\},\{b\},\{a,c\},\{b,c\}\}$. Clearly, X is an sb \hat{g} -T₁ space.

Definition 3.5: A topological space (X,τ) is said to be $sb\hat{g}$ - T_2 (or $sb\hat{g}$ -Hausdorff) if for each distinct points x,y in X, there exist two disjoint $sb\hat{g}$ -open sets U and V of X containing x and y respectively.

Example 3.6: Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi, \{b\}, \{c\}, \{b,c\}\}\}$. Here sbg-

 $O(X)=\{X,\phi,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}\}.$ Clearly, X is an sbg-T₂ space.

Proposition 3.7: For a topological space (X,τ) , the following properties hold:

- i) Every α - T_i space is sb \hat{g} - T_i space, $i=0,\ 1,\ 2.$
- ii) Every $sb\hat{g}$ - T_i space is b- T_i space, i = 0, 1, 2.
- iii)Every sb \hat{g} - T_i space is gb- T_i space,i = 0,1, 2.
- iv) Every $sb\hat{g}$ - T_i space is g^*b - T_i space i= 0,1, 2.
- v) Every sb \hat{g} - T_i space is $b\hat{g}$ - T_i space, i = 0, 1, 2.

Proof: The proofs follow from Proposition 2.7, 2.8(i), 2.8(ii), 2.8(iii) and 2.8(iv).

The following examples show that the converse of the above propositions need not be true.

Example 3.8:

- (i) Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Here α -O(X)= $\{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $sb\hat{g}$ -O(X)= $\{X,\phi,\{a\},\{b\},\{a,b\},\{a,c\},\{b,c\}\}\}$. Clearly (X,τ) is $sb\hat{g}$ -T₁ and $sb\hat{g}$ -T₂ space but not α -T₁ and α -T₂ space.
- (ii) Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a\},\{b,c\}\}$. Here b-O(X) = $\{X,\phi,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}$ and sb \hat{g} -O(X)= $\{X,\phi,\{a,b\},\{c\}\}$ Clearly (X,τ) is b-T_i space but not sb \hat{g} -T_i space, i=0,1,2.
- (iii) Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a,b\},\{c\}\}$. Here gb-O(X) = $\{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$ and sbĝ-O(X)= $\{X,\phi,\{a,b\},\{c\}\}$. Clearly (X,τ) is gb-T_i space but not sbĝ-T_i space, i=0,1,2.
- (iv) Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a,c\}\}$. Here $g*b\text{-}O(X) = \{X,\phi,\{a\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$ and $sb\hat{g}\text{-}O(X) = \{X,\phi,\{a,c\}\}$. Clearly (X,τ) is $g*b\text{-}T_i$ space but not $sb\hat{g}\text{-}T_i$ space, i=0,1,2.
- $\begin{array}{lll} & \textbf{v} \text{) Let } X = \{a,b,c,d\} \text{ with a topology} \\ \tau = \{X,\phi,\{a\},\{b,c,d\}\}. \text{ Here b\hat{g} } O(X) = \!\! \{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,c\},\{d\},\{c,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\} \text{ and } \\ \text{sb\hat{g} -O(X) = \!\! \{X,\phi,\{a\},\{b,c,d\}\}. Clearly (X,τ) is b\hat{g}$ -T$_i space but not sb\hat{g}$-T$_i space, $i = 0,1,2. \end{array}$

Proposition 3.9:

A topological space (X,τ) is $sb\hat{g}$ - T_0 if and only if for each pair of distinct points x,y of X, $sb\hat{g}$ - $cl(\{x\}) \neq sb\hat{g}$ - $cl(\{y\})$.

Proof: Let (X,τ) be an sb \hat{g} -T₀ space and x, y be any two distinct points of X. There exists an sbĝ-open set U containing x or y, say x but not y. Then X\U is an sbg-closed set which does not contain x but contains y. Since $sb\hat{g}$ - $cl(\{y\})$ is the smallest $sb\hat{g}$ -closed set containing y, $sb\hat{g}-cl(\{y\}) \subseteq X\setminus U$. Therefore, $x \notin sb\hat{g}\text{-}cl(\{y\})$. Consequently, $sb\hat{g}-cl(\{x\}) \neq sb\hat{g}-cl(\{y\})$. Conversely, suppose that $x, y \in X$, $x \neq y$ and $sb\hat{g}\text{-}cl(\{x\})$ \neq sb \hat{g} -cl($\{y\}$). Let $z \in X$ such that $z \in sb\hat{g}$ $cl(\{x\})$ but $z \notin sb\hat{g}-cl(\{y\})$. We claim that x \notin sb \hat{g} -cl($\{y\}$). Suppose $x \in$ sb \hat{g} -cl($\{y\}$). Then by proposition 2.9(2) and (6), sbg $cl(\lbrace x \rbrace) \neq sb\hat{g}-cl(sb\hat{g}-cl(\lbrace y \rbrace)) = sb\hat{g}-cl(\lbrace y \rbrace).$ Therefore, $z \in sb\hat{g}\text{-}cl(\{y\})$ which is a contradiction. Thus, $x \notin sb\hat{g}\text{-}cl(\{y\})$. Now, $X \cdot sb\hat{g} \cdot cl(\{y\})$ is an $sb\hat{g} \cdot open$ set in X such that $x \in X \backslash sb\hat{g}-cl(\{y\})$ and $y \notin X \backslash sb\hat{g}-cl(\{y\})$ $cl(\{y\})$. Hence, (X,τ) is an $sb\hat{g}$ - T_0 space.

Proposition 3.10: A topological space (X,τ) is sb \hat{g} - T_1 if and only if the singletons are sb \hat{g} -closed sets.

Proof: Let (X,τ) be an sb \hat{g} - T_1 space and x be any point of X. Suppose $y \in X \setminus \{x\}$. Then $x \neq y$. So, there exists an sb \hat{g} -open set U such that $y \in U$ but $x \notin U$. Consequently, $y \in U \square \square X \setminus \{x\}$, that is $X \setminus \{x\} = \bigcup \{U: y \in X \setminus \{x\}\}$ which is sb \hat{g} -open. So, singletons in (X,τ) are sb \hat{g} -closed sets. Conversely, suppose $\{p\}$ is sb \hat{g} -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Since $x \neq y$, $y \in X \setminus \{x\}$. So, $X \setminus \{x\}$ is an sb \hat{g} -open set contains y but not x. Similarly, $X \setminus \{y\}$ is an sb \hat{g} -open set contains x but not y. Hence, y is an sby-open set contains y but not y. Hence, y is an sby-open set contains y but not y. Hence, y is an sby-open set contains y but not y.

Proposition 3.11: Let (X,τ) be a topological space. Then the following statements are equivalent:

- 1) X is an sbĝ-T₂ space.
- 2) Let $x \in X$. For each $y \neq x$, there exists an sb \hat{g} -open set U containing x such that $y \notin sb\hat{g}$ -cl(U).
- 3) For each $x \in X$, $\bigcap \{sb\hat{g}\text{-}cl(U) : U \in sb\hat{g}\text{-}O(X) \text{ and } x \in U\} = \{x\}.$

Proof:

(1) \Rightarrow (2): Since X is an sb \hat{g} -T₂ space, for each y \neq x, there exist two disjoint sb \hat{g} -

open sets U and V such that $x \in U$ and $y \in$ V. If $F = X \setminus V$, then F is an sbg-closed set such that $U \subseteq F$. By proposition 2.9(2), sb \hat{g} $cl(U) \subset sb\hat{g}-cl(F) = F$. Since $y \notin F$ $y \notin sb\hat{g}$ cl(U).

(2) \Rightarrow (3): Suppose for any $x \in X$ and for each $y \neq x$, there exists an sbg-open set U such that $x \in U$ and $y \notin sb\hat{g}\text{-}cl(U)$. Therefore, $y \notin \bigcap \{sb\hat{g}\text{-}cl(U) : U \in sb\hat{g}\text{-}O(X)\}$ and $x \in U$ }. Hence, $\bigcap \{sb\hat{g}\text{-}cl(U) : U \in sb\hat{g}\text{-}$ $O(X) \text{ and } x \in U = \{x\}.$

(3)⇒ (1): Let $x,y \in X$ and $x \neq y$. Then $y \notin$ $\{x\} = \bigcap \{sb\hat{g}\text{-}cl(U) : U \in sb\hat{g}\text{-}O(X) \text{ and } x \in A\}$ U). This implies that, there exists an sbgopen set U containing x such that y ∉ sbĝcl(U). Let $V = X \setminus sb\hat{g}$ -cl(U). Then V is $sb\hat{g}$ open and $y \in V$. Now, $U \cap V = U \cap (X \setminus sb\hat{g})$ $cl(U) \subset U \cap (X \setminus U) = \emptyset$. Therefore, X is an sbĝ-T₂ space.

Proposition 3.12: Every $sb\hat{g}$ - T_1 space is sbĝ-T₀ space.

Proof: The proof follows from definition 3.1 and 3.3.

The following example shows that the converse of the above proposition need not be true.

Example:

Let $X = \{a,b,c\}$ with a topology $\tau =$ $\{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}.$ Here $O(X)=\{X, \phi,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$. Clearly, (X,τ) is an sbŷ-T0 space but not sbŷ-T1 space.

Proposition 3.13:Every Every sbg-T₂ space is sbĝ-T₁ space.

Proof: The proof follows from definition 3.3 and 3.5.

Definition 3.14: A subset A of a topological space X is called sbg-difference set (briefly $sb\hat{g}-D$ set) if there are $U,V \in sb\hat{g}-O(X)$ such that $U \neq X$ and $A = U \setminus V$. It is true that every sbŷ-open set different from X is an sbŷ-D set if A = U and $V = \Phi$. So, we can observe the following.

Remark 3.15: Every proper sbg-open set is an sbĝ-D set.

The following example shows that the converse of the above remark need not be true

Example 3.16: Let $X = \{a,b,c,d\}$ with a topology $\tau = \{X, \phi, \{a\}, \{a,c\}, \{a,b,d\}\}\}$. Here sbĝ-O(X) $={X,\phi,{a},{a,b},{a,c},$ {a.d}. $\{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}.$ Consider, U = $\{a,b,d\} \neq X$ and $V = \{a,b,c\}$ are sbĝ-open sets in X. Then, we have $A = U \setminus V = \{d\}$ is an sbĝ-D set but not sbĝ-open set.

Definition 3.17: A topological space (X,τ) is said to be sbĝ-symmetric if for x,y in X, x \in sbg-cl({y}) implies $y \in$ sbg-cl({x}) (or x \notin sb \hat{g} -cl($\{y\}$) implies $y \notin$ sb \hat{g} -cl($\{x\}$)).

Example 3.18: Let $X = \{a,b,c\}$ with a topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Here sbĝ $-C(X)=\{X,\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}\}$. Here for any pair of distinct points x,y in X, $x \notin$ $sb\hat{g}$ - $cl(\{y\})$ implies $y\notin sb\hat{g}$ - $cl(\{x\})$ So, X is an sbŷ-symmetric space.

Proposition 3.19: Let (X,τ) be a topological space. Then (X,τ) is an sbg-symmetric space if and only if $\{x\}$ is sbg-closed for each $x \in$ X.

Proof: Assume that $\{x\}$ is sbg-open in X. Then there exists sbg-open set U such that $\{x\} \subset U$, but $sb\hat{g}-cl(\{x\}) \not\subseteq U$. Then $sb\hat{g}$ $cl(\{x\}) \cap (X \setminus U) \neq \emptyset$. Now, we take $y \in sb\hat{g}$ $cl(\{x\}) \cap (X \setminus U)$, then by hypothesis $x \in$ $sb\hat{g}$ -cl({y}) and also $sb\hat{g}$ -cl({y}) \subset (X\U). Therefore, $x \notin U$, which is a contradiction. Hence, $\{x\}$ is sbg-closed for each $x \in X$. Conversely, suppose singleton sets are sbgclosed in X. We claim that X is an sbgsymmetric space. Assume that $x \in sb\hat{g}$ $cl(\{y\})$ but $y \notin sb\hat{g}-cl(\{x\})$. Then $\{y\} \subseteq$ $X \cdot sb\hat{g} - cl(\{x\})$. So, $sb\hat{g} - cl(\{y\}) \subseteq X \cdot sb\hat{g}$ $cl(\{x\})$. Thus, $x \in X \setminus sb\hat{g}-cl(\{x\})$. Therefore, $x \notin sb\hat{g}\text{-cl}(\{x\})$ which is a contradiction. Hence, $y \in sb\hat{g}\text{-}cl(\{x\})$.

Corollary 3.20: If a topological space (X,τ) is an sbĝ-T₁ space, then it is sbĝsymmetric.

Proof: Since X is an $sb\hat{g}$ -T₁ space and by proposition 3.10, singleton sets are sbgclosed. Therefore by Proposition 3.19, (X,τ) is an sbĝ-symmetric space.

Corollary 3.21: If a topological space (X,τ) is sbĝ-symmetric and sbĝ-T0 space, then (X,τ) is sbŷ-T1 space.

Proof: Let $x \neq y$ and (X,τ) be an sbg-T0 space. We may assume that $x \in U \square X \setminus \{y\}$ for some $U \in sb\hat{g}-O(X)$. Then $x \notin sb\hat{g}$ $cl(\{y\})$. Since X is an sbĝ-symmetric space, $y \notin sb\hat{g}-cl(\{x\})$. Then there exists an $sb\hat{g}$ $cl(\{y\})$. Since X is an sbĝ-symmetric space, $y \notin sb\hat{g}\text{-cl}(\{x\})$. Then there exists an $sb\hat{g}$ -open set V such that $y \in V \square X \setminus \{x\}$. Hence, (X,τ) is an $sb\hat{g}\text{-T1}$ space.

Definition 3.22: Let (X,τ) be a topological space and $A \subseteq X$. Then the sbg-kernel of A is denoted by sbg-ker(A) and is defined to be sbg-ker(A) = $\bigcap \{U \in \text{sbg-O}(X) : A \subseteq U\}$.

Example 3.23: Let $X = \{a,b,c\}$ with a topology $\tau = \{X,\phi,\{a\},\{a,b\},\{a,c\}\}$. Here sb\hat{g} $O(X) = \{X,\phi, \{a\},\{a,b\},\{a,c\}\}$. sb\hat{g}-ker(\{a\}) = \{a\}; sb\hat{g}-ker(\{b\}) = \{a,b\}; sb\hat{g}-ker(\{a,b\}) = \{a,b\}; sb\hat{g}-ker(\{a,c\}) = \{a,c\}; sb\hat{g}-ker(\{b,c\}) = X.

Proposition 3.24: Let (X,τ) be a topological space and $x \in X$. Then $y \in sb\hat{g}-ker(\{x\})$ if and only if $x \in sb\hat{g}-cl(\{y\})$.

Proof: Suppose that $y \notin sb\hat{g}\text{-ker}(\{x\})$. Then there exists an $sb\hat{g}\text{-open}$ set V containing x such that $y \notin V$. By proposition 2.10, $x \notin sb\hat{g}\text{-cl}(\{y\})$. Conversely, assume that $x \notin sb\hat{g}\text{-cl}(\{y\})$. Then there exists an $sb\hat{g}\text{-open}$ set U containing x such that $y \notin U$. By the definition of $sb\hat{g}\text{-kernel}$, $y \notin sb\hat{g}\text{-ker}(\{x\})$.

Proposition 3.25: Let (X,τ) be a topological space and A be a subset of (X,τ) . Then sbg-ker $(A) = \{x \in X : sbg-cl(\{x\}) \cap A \neq \emptyset\}$.

Proof: Let $x \in sb\hat{g}$ -ker(A). Suppose $x \notin \{x\}$ $\in X : sb\hat{g}\text{-cl}(\{x\}) \cap A \neq \emptyset\}$. Then $sb\hat{g}$ $cl(\lbrace x \rbrace) \cap A = \emptyset$. So, $X \cdot sb\hat{g} \cdot cl(\lbrace x \rbrace)$ is an $sb\hat{g} \cdot cl(\lbrace x \rbrace)$ open set containing A and $x \notin X \setminus sb\hat{g}$ cl({x}). Therefore by definition 3.22 x∉sbĝ $x \in sb\hat{g}-ker(A)$. ker(A). It contradicts Conversely, if $sb\hat{g}-cl(\{x\}) \cap A \neq \emptyset$. We claim that, $x \in sb\hat{g}$ -ker(A). Suppose that $x \notin$ sbĝ-ker(A). Then there exists an sbĝ-open set V containing A such that $x \notin V$. Now, let $y \in sb\hat{g}\text{-}cl(\{x\}) \cap A$. Then $y \in sb\hat{g}\text{-}cl(\{x\})$ and $y \in A$. By proposition 2.10, $y \in sb\hat{g}$ $cl(\{x\})$ implies $V \cap \{x\} \neq \emptyset$ for every open set V containing y. Hence, $x \in V$. By this contradiction, $x \in sb\hat{g}\text{-ker}(A)$.

Proposition 3.2: The following properties hold for the subsets A, B of a topological space (X,τ) :

- $1)A \subseteq sb\hat{g}\text{-ker}(A).$
- 2)A \subseteq B implies sbĝ-ker(A) \subseteq sbĝ-ker(B). 3)If \land is sbĝ-open in (X τ), then \land = sb \circ
- 3)If A is sbĝ-open in (X,τ) , then $A = \text{sb}\hat{g}$ -ker(A).

4) $sb\hat{g}$ - $ker(sb\hat{g}$ - $ker(A)) = sb\hat{g}$ -ker(A).

Proof: 1)Suppose that A is any subset of X. If $x \notin sb\hat{g}\text{-ker}(A)$, then there exist $U \in sb\hat{g}\text{-O}(X)$ such that $A \subseteq U$ and $x \notin U$. Therefore, $x \notin A$. Hence $A \subseteq sb\hat{g}\text{-ker}(A)$.

- 2) Let $A \subseteq B$. Suppose $sb\hat{g}\text{-ker}(A) \nsubseteq sb\hat{g}\text{-ker}(B)$. Then $x \in sb\hat{g}\text{-ker}(A)$ but $x \notin sb\hat{g}\text{-ker}(B)$. By the definition of $sb\hat{g}\text{-kernel}$, there exists an $sb\hat{g}\text{-open}$ set U such that $B \subseteq U$ and $x \notin U$. Since $A \subseteq B \subseteq U$, $x \notin sb\hat{g}\text{-ker}(A)$. By this contradiction, $sb\hat{g}\text{-ker}(A) \subseteq sb\hat{g}\text{-ker}(B)$.
- 3) Obvious from the definition of sbĝ-ker(A).
- 4) From (1) and (2), we have, $sb\hat{g}$ - $ker(A) \subseteq sb\hat{g}$ - $ker(sb\hat{g}$ -ker(A)). To prove the other implication, if $x \notin sb\hat{g}$ -ker(A), then there exists $U \in sb\hat{g}$ -O(X) such that $A \subseteq U$ and $x \notin U$. Therefore, $sb\hat{g}$ - $ker(A) \subseteq U$ and so $x \notin sb\hat{g}$ - $ker(sb\hat{g}$ -ker(A)). Hence, $sb\hat{g}$ - $ker(A) = sb\hat{g}$ - $ker(sb\hat{g}$ -ker(A)).

Proposition 3.27: If a singleton set $\{x\}$ is an sb \hat{g} -D set of (X,τ) , then sb \hat{g} -ker $(\{x\}) \neq X$.

Proof: since $\{x\}$ is an sb \hat{g} -D set of (X,τ) , there exist two sb \hat{g} -open subsets U, V such that $\{x\}$ =U\V.So that $\{x\}$ \subseteq U and U \neq X. By proposition 3.26(2) and(3),sb \hat{g} -ker($\{x\}$) \subseteq U \neq X. Hence sb \hat{g} -ker($\{x\}$) \neq X.

REFERENCE:

[1] Alias B. Khalaf and Suzan N. Dawod, g*b-Separation Axioms, Gen. Math. Notes, Vol. 16, No. 2, 14-31, 2013.

[2]Bala Deepa Arasi.K and Navaneetha Krishnan.S, On sbĝ-closed sets in topological spaces, International Journal of Mathematical Archive, 6(10), 115-121, 2015.

- [3] Bala Deepa Arasi.K, Navaneetha Krishnan.S, On sbĝ-continuous functions and sbĝ-homeomorphisms in topological spaces, International Research Journal of Mathematics, Engineering and IT, Vol.3, Issue 1, 22-38, January 2016.
- [4] Bala Deepa Arasi.K, Navaneetha Krishnan.S and Pious Missier.S, On contra sbĝ-continuous functions in topological spaces, International Journal of Engineering Research and Technology, Vol.5, Issue 2, 135-142, February 2016.
- [5] Bala Deepa Arasi.K, Navaneetha Krishnan.S and Pious Missier.S, On Topological sbĝ- quotient mappings, International Journal of Innovative Research in Science, Engineering and

Technology, Vol.5, Issue 6, 9435-9443 ,June 2016.

- [6] Bala Deepa Arasi.K, Navaneetha Krishnan.S and Pious Missier.S, On sbg-connected and sbg-compact spaces, International Journal of Engineering and scientific Research ,Vol.4 ,Issue 8, 89-101,August 2016.
- [7] Caldas.M and Jafari.S, On some applications of b-open sets in topological spaces, *Kochi. J.*

Math., 211-19, 2007.

- [8]Dontchev.J, On some separation axioms associated with the α -topology, *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.*,18 ,31-35 ,1997.
- [9]Hussein A.Khaleefah, New Types of Separation Axioms via Generalized b-open set, *Research Journal of Mathematical and Statistical Sciences*, Vol .1(18) , 16-24 ,2013.

